importnumpyasnpimportmatplotlib.pyplotaspltfromscipy.optimizeimportfsolve# Define a potential energy function (e.g., a simple polynomial)defV(x):returnx**4-4*x**3+4*x**2+0.5*x# Compute its first derivative (Force)defdV(x):return4*x**3-12*x**2+8*x+0.5# Compute its second derivativedefddV(x):return12*x**2-24*x+8# Define the function for which we want to find the roots (i.e., where the force is zero)defroots_function(x):returndV(x)# Compute the roots using fsolve with different initial guessesroots=fsolve(roots_function,[-0.5,0.5,2.5])roots=np.unique(np.round(roots,5))# Ensure the roots are unique# Sort these roots based on the value of the potential functionsorted_roots=sorted(roots,key=lambdaroot:V(root))global_min_x=sorted_roots[0]local_min_x=sorted_roots[1]ts_x=sorted_roots[2]# Define the range for xx=np.linspace(-0.5,2.5,400)# Create the plots with an additional subplot for the second derivativefig,(ax1,ax2,ax3)=plt.subplots(3,1,figsize=(8,9))# Plot the potential energy functionax1.plot(x,V(x),'-k',label='Potential Energy')ax1.set_title("Potential Energy")ax1.set_ylabel("Potential Energy")ax1.set_ylim(-0.5,2.5)ax1.grid(True)ax1.legend()# Annotate the Global Min, TS, and Local Min on the Potential energy curveforx_val,labelinzip([global_min_x,ts_x,local_min_x],["Global Min","TS","Local Min"]):ax1.plot(x_val,V(x_val),'ro')ax1.annotate(label,(x_val,V(x_val)),textcoords="offset points",xytext=(0,10),ha='center')# Plot its first derivative (i.e., the force)ax2.plot(x,dV(x),'-k',label='Force (Negative Gradient)')ax2.axhline(0,color='black',linewidth=0.5)ax2.set_title("Force")ax2.set_ylabel("Force")ax2.set_ylim(-2,2.5)ax2.grid(True)ax2.legend()# Fill between the Force curve and x-axisax2.fill_between(x,dV(x),0,where=(dV(x)>0),color='green',alpha=0.1)ax2.fill_between(x,dV(x),0,where=(dV(x)<0),color='red',alpha=0.1)# Annotate the Global Min, TS, and Local Min on the Force curveforx_val,labelinzip([global_min_x,ts_x,local_min_x],["Global Min","TS","Local Min"]):ax2.plot(x_val,dV(x_val),'ro')ax2.annotate(label,(x_val,dV(x_val)),textcoords="offset points",xytext=(0,10),ha='center')# Plot the second derivativeax3.plot(x,ddV(x),'-k',label='Second Derivative (Curvature)')ax3.axhline(0,color='black',linewidth=0.5)ax3.set_title("Second Derivative")ax3.set_xlabel("Coordinate")ax3.set_ylabel("Second Derivative")ax3.set_ylim(-5,15)ax3.grid(True)ax3.legend()# Fill between the Second Derivative curve and x-axisax3.fill_between(x,ddV(x),0,where=(ddV(x)>0),color='green',alpha=0.1)ax3.fill_between(x,ddV(x),0,where=(ddV(x)<0),color='red',alpha=0.1)# Annotate the Global Min, TS, and Local Min on the Second Derivative curveforx_val,labelinzip([global_min_x,ts_x,local_min_x],["Global Min","TS","Local Min"]):ax3.plot(x_val,ddV(x_val),'ro')ax3.annotate(label,(x_val,ddV(x_val)),textcoords="offset points",xytext=(0,10),ha='center')plt.tight_layout()plt.show()