Turbomole を用いた量子化学計算の基本的な手順:エチレンの DFT 計算を例として

  • Turbomole は量子化学計算で用いられるプログラムパッケージのひとつです
  • このノートでは、エチレン分子を例にして、Turbomole を使って構造最適化、振動数解析、励起状態計算に取り組むときの手順を紹介します

基本的な手順

  • Turbomole の入力ファイル(controlなど)は、代表的な量子化学計算パッケージの Gaussian などと比べると、かなり複雑です
  • したがって基本的には、Turbomole のdefineツールを使って、計算の条件などを対話的に設定します
  • defineツールで基本的な設定をした後に、内容ごとに異なるプログラムを用いて計算を実行します
    • たとえば、一点計算はdscf、構造最適化はjobex、振動数解析はaoforce、励起状態計算はescfなど

分子研スパコンを使っている場合

  • ログイン後、moduleコマンドで、Turbomoleの環境設定をおこないます
module load turbomole

初期構造の準備

  • エチレン分子の初期構造をethylene.xyzというファイルに保存します
ethylene.xyz
6
C2H4 molecule
C   0.00   0.00   0.00
C  -1.31   0.00   0.00
H  -1.85  -0.94   0.00
H  -1.85   0.94   0.00
H   0.54   0.94   0.00
H   0.54  -0.94   0.00
ethylene.xyz
  • Turmobole に付属するx2tツールを使って、xyz形式から、Turbomole 用の座標形式に変換します
x2t ethylene.xyz | tee coord
coord
$coord
    0.00691780724847     -0.00000000001683     -0.00000000001018  c
   -2.48245903052942      0.00000000001673      0.00000000001010  c
   -3.55380171099544     -1.72798218518559     -0.00000000000268  h
   -3.55380171101130      1.72798218518850     -0.00000000000269  h
    1.07826048771524      1.72798218518535      0.00000000000274  h
    1.07826048773116     -1.72798218518815      0.00000000000271  h
$user-defined bonds
$end

構造最適化

  • 構造最適化では、分子に掛かる力の方向に少しずつ動かして、安定な(=ポテンシャルエネルギーが小さい)構造を探索します

define の起動

  • ターミナルでdefineを実行して、対話型セッションを開始します
define
 ***********************************************************
 *                                                         *
 *                       D E F I N E                       *
 *                                                         *
 *         TURBOMOLE'S  INTERACTIVE  INPUT  PROGRAM        *
 *                                                         *
 *  Quantum Chemistry Group       University of Karlsruhe  *
 *                                                         *
 ***********************************************************


 DATA WILL BE WRITTEN TO THE NEW FILE control

 IF YOU WANT TO READ DEFAULT-DATA FROM ANOTHER control-TYPE FILE,
 THEN ENTER ITS LOCATION/NAME OR OTHERWISE HIT >return<.
  • INPUT: Enter
 INPUT TITLE OR
 ENTER & TO REPEAT DEFINITION OF DEFAULT INPUT FILE
  • INPUT: ethylene
    • このインプットのタイトルを ethylene にします

座標の設定

  • まずは、計算に用いる分子の立体構造を指定します
 symmetry group of the molecule :   c1

 the group has the following generators :
   c1(z)

    1 symmetry operations found

 SPECIFICATION OF MOLECULAR GEOMETRY ( #ATOMS=0     SYMMETRY=c1  )
 YOU MAY USE ONE OF THE FOLLOWING COMMANDS :
 sy <group> <eps> : DEFINE MOLECULAR SYMMETRY (default for eps=3d-1)
 desy <eps>       : DETERMINE MOLECULAR SYMMETRY AND ADJUST
                     COORDINATES (default for eps=1d-6)
 syndi <eps>      : LIKE DESY, BUT FIND ONLY GROUPS WITH NON-
                     DEGENERATE IRREPS (D2h AND SUBGROUPS)
 susy             : ADJUST COORDINATES FOR SUBGROUPS
 ai               : ADD ATOMIC COORDINATES INTERACTIVELY
 a <file>         : ADD ATOMIC COORDINATES FROM FILE <file>
 aa <file>        : ADD ATOMIC COORDINATES IN ANGSTROEM UNITS FROM FILE <file>
 sub              : SUBSTITUTE AN ATOM BY A GROUP OF ATOMS
 i                : INTERNAL COORDINATE MENU
 ired             : REDUNDANT INTERNAL COORDINATES
 pbc_ired         : PERIODIC REDUNDANT INTERNAL COORDINATES
 red_info         : DISPLAY REDUNDANT INTERNAL COORDINATES
 ff               : UFF-FORCEFIELD CALCULATION
 m                : MANIPULATE GEOMETRY
 frag             : Define Fragments for BSSE calculation
 w <file>         : WRITE MOLECULAR COORDINATES TO FILE <file>
 r <file>         : RELOAD ATOMIC AND INTERNAL COORDINATES FROM FILE <file>
 name             : CHANGE ATOMIC IDENTIFIERS
 del              : DELETE ATOMS
 fix              : FIX ATOMS
 dis              : DISPLAY MOLECULAR GEOMETRY
 banal            : CARRY OUT BOND ANALYSIS
 *                : TERMINATE MOLECULAR GEOMETRY SPECIFICATION
                     AND WRITE GEOMETRY DATA TO CONTROL FILE
  • INPUT: a coord
    • 座標ファイルを読み込みます
 CARTESIAN COORDINATES FOR   6 ATOMS HAVE SUCCESSFULLY
 BEEN ADDED.
 DEFINITIONS OF INTERNAL COORDINATES HAVE  N O T  BEEN READ.
  • INPUT: desy
    • 対称性を自動で設定します
 molecule is planar


    2 symmetry operations found :

 given set of    6 coordinate triples separated
 into    2 bin(s) for a given accuracy of   0.5000D-06


 no atom resides at center of mass

  try inversion ...

    4 symmetry operations found :

    8 symmetry operations found :
  thrsym =   1.000000000000000E-006

 c2 axis orthogonal to cn axis         :    5
 c2 axis orthogonal to sn axis         :    4
 mirror plane orthogonal to cn/sn axis :    2
 mirror plane parallel to cn/sn axis   :    2
 c3 axis different from cn/sn axis     :    0


 RESULTING SCHOENFLIES SYMBOL = d2h


 symmetry group of the molecule :   d2h

 the group has the following generators :
   c2(z)
   c2(x)
   mirror plane sigma(xy)

    8 symmetry operations found

 THE MOLECULAR GEOMETRY WILL BE SYMMETRIZED !


 SPECIFICATION OF MOLECULAR GEOMETRY ( #ATOMS=6     SYMMETRY=d2h )
  • INPUT: ired
    • 内部座標を自動で設定します
     START LOOP OVER SUBUNITS
     time in mkbmet+rdiag  cpu:  0.01 sec    wall:  0.01 sec    ratio:  1.0
                     Lowest Eigenvalue of BmBt is:          0.3939705452
                     Lowest Eigenvalue of BmBt-Mat          0.3939705452
     time in Decoupling    cpu:  0.00 sec    wall:  0.00 sec    ratio:  1.0
     time in Preparation   cpu:  0.00 sec    wall:  0.00 sec    ratio:  1.0
     time in Loop Subunit  cpu:  0.01 sec    wall:  0.01 sec    ratio:  1.0
     time in Unpack        cpu:  0.00 sec    wall:  0.00 sec    ratio:  1.0
     time in Total Time    cpu:  0.01 sec    wall:  0.01 sec    ratio:  1.0

 SPECIFICATION OF MOLECULAR GEOMETRY ( #ATOMS=6     SYMMETRY=d2h )
  • INPUT: *
    • 座標の指定を終わります
 GEOMETRY DATA WILL BE WRITTEN TO FILE coord

基底関数の設定

  • 次に、計算に用いる基底関数を設定します
 SUPPLYING BASIS SETS TO    6 ATOMS

 ATOMIC ATTRIBUTE DEFINITION MENU  ( #atoms=6     #bas=6     #ecp=0     )

 b    : ASSIGN ATOMIC BASIS SETS
 bb   : b RESTRICTED TO BASIS SET LIBRARY
 bl   : LIST ATOMIC BASIS SETS ASSIGNED
 bm   : MODIFY DEFINITION OF ATOMIC BASIS SET
 bp   : SWITCH BETWEEN 5d/7f AND 6d/10f
 lib  : SELECT BASIS SET LIBRARY
 ecp  : ASSIGN EFFECTIVE CORE POTENTIALS
 ecpb : ecp RESTRICTED TO BASIS SET LIBRARY
 ecpi : GENERAL INFORMATION ABOUT EFFECTIVE CORE POTENTIALS
 ecpl : LIST EFFECTIVE CORE POTENTIALS ASSIGNED
 ecprm: REMOVE EFFECTIVE CORE POTENTIAL(S)
 c    : ASSIGN NUCLEAR CHARGES (IF DIFFERENT FROM DEFAULTS)
 cem  : ASSIGN NUCLEAR CHARGES FOR EMBEDDING
 m    : ASSIGN ATOMIC MASSES (IF DIFFERENT FROM DEFAULTS)
 iso  : ASSIGN ISOTOPE FOR NUCLEAR COUPLING CALCULATION
 dis  : DISPLAY MOLECULAR GEOMETRY
 dat  : DISPLAY ATOMIC ATTRIBUTES YET ESTABLISHED
 h    : EXPLANATION OF ATTRIBUTE DEFINITION SYNTAX
 *    : TERMINATE THIS SECTION AND WRITE DATA OR DATA REFERENCES TO control
 GOBACK=& (TO GEOMETRY MENU !)
  • INPUT: b all 6-31G*
    • 基底関数として、全ての原子に 6-31G(d) を用います
 SUPPLYING BASIS SETS TO    6 ATOMS
 #
 #                   BASIS SET LIBRARY FOR CARBON
 #            ECPs, HONDO-BASIS SETS FROM basen AND
 #     FULLY OPTIMIZED BASIS SETS FROM newbas MERGED 02/6/93
 #
 #         abbreviation hondo refers to the version 7.0 of HONDO
 #
 ########################################################################
 #       HF limit : E(3P) = -37.688619 a.u. (C. Froese Fischer, 1977)
 ########################################################################
 #       Roothaan parameters for C(3P) in symmetry I:
 #        a = 3/4      b = 3/2
 ########################################################################
 #
 c 6-31G*
 c 6-31G**
 # ROHF(equiv) energy is -37.67686564828 a.u.  (virial theorem = 2.000362
 # UHF(noneq)  energy is -37.68057667956 a.u.  (virial theorem = 2.000594
 # P.C. Hariharan and J.A. Pople, Theor. Chim. Acta 28, 213 (1973)
 # obtained from  EMSL  Basis Set Exchange Library  11/4/08 6:45 AM
 # antique valence double zeta
 #
 #                    BASIS SET LIBRARY FOR HYDROGEN
 #            ECPs, HONDO-BASIS SETS FROM basen AND
 #     FULLY OPTIMIZED BASIS SETS FROM newbas MERGED 02/6/93
 #
 #         abbreviation hondo refers to the version 7.0 of HONDO
 #
 ########################################################################
 #       HF limit : E(2S) = -0.5 a.u.
 ########################################################################
 #       Roothaan parameters for H(2S):
 #        a = 0      b = 0
 ########################################################################
 #
 h 6-31G*
 # HF(equiv) energy is -0.49823291073 a.u.  (virial theorem = 2.023350085
 # W.J. Hehre, R. Ditchfield, and J.A. Pople, J. Chem. Phys. 56, 2257 (19
 # obtained from EMSL  Basis Set Exchange Library 11/4/08 6:44 AM
 # antique valence double zeta
  • INPUT: bl
    • 指定した基底関数を確認します
------------------------------------------------------------------------
                    LIST OF BASIS SETS DEFINED YET
------------------------------------------------------------------------
 INDEX | BASIS SET NICKNAME
------------------------------------------------------------------------
    1  | c 6-31G*
    2  | h 6-31G*
------------------------------------------------------------------------

 NOTE THAT YOU MAY USE bm #<i> IF YOU WANT TO MODIFY THE
 BASIS SET WITH THE INDEX <i> BY MEANS OF THE bm COMMAND
  • INPUT: *
    • 基底関数の設定を終わります
  BASIS SETS WILL BE WRITTEN TO FILE basis BY DEFAULT


              +--------------------------------------------------+
              |               basis set information              |
              +--------------------------------------------------+

              we will work with the 1s 3p 5d 7f 9g ... basis set
              ...i.e. with spherical basis functions...

   type   atoms  prim   cont   basis
   ---------------------------------------------------------------------------
    c        2     27     14   6-31G*   [3s2p1d|10s4p1d]
    h        4      4      2   6-31G*   [2s|4s]
   ---------------------------------------------------------------------------
   total:    6     70     36
   ---------------------------------------------------------------------------

   total number of primitive shells          :   19
   total number of contracted shells         :   20
   total number of cartesian basis functions :   38
   total number of SCF-basis functions       :   36


              ATOMIC COORDINATES              ATOM SHELLS CHARGE PSEUDO MASS
     1.24468842    0.00000000    0.00000000    c      6      6.     0 12.011
    -1.24468842    0.00000000    0.00000000    c      6      6.     0 12.011
    -2.31603110   -1.72798219    0.00000000    h      2      1.     0  1.008
    -2.31603110    1.72798219    0.00000000    h      2      1.     0  1.008
     2.31603110    1.72798219    0.00000000    h      2      1.     0  1.008
     2.31603110   -1.72798219    0.00000000    h      2      1.     0  1.008


 we will work with the  1s 3p 5d

 SYMMETRY HAS BEEN CHANGED


 there are 8 real representations :   ag   b1g  b2g  b3g  au   b1u  b2u  b3u

電子配置の設定

  • 次に、分子軌道を初期推定する方法や電子配置を設定します
  OCCUPATION NUMBER & MOLECULAR ORBITAL DEFINITION MENU

 CHOOSE COMMAND
 infsao     : OUTPUT SAO INFORMATION
 atb        : Switch for writing MOs in ASCII or binary format
 eht        : PROVIDE MOS && OCCUPATION NUMBERS FROM EXTENDED HUECKEL GUESS
 use <file> : SUPPLY MO INFORMATION USING DATA FROM <file>
 man        : MANUAL SPECIFICATION OF OCCUPATION NUMBERS
 hcore      : HAMILTON CORE GUESS FOR MOS
 flip       : FLIP SPIN OF A SELECTED ATOM
 &          : MOVE BACK TO THE ATOMIC ATTRIBUTES MENU
 THE COMMANDS  use  OR  eht  OR  *  OR q(uit) TERMINATE THIS MENU !!!
 FOR EXPLANATIONS APPEND A QUESTION MARK (?) TO ANY COMMAND
  • INPUT: eht
    • 拡張 Huckel 法を用いて、初期 MO の推定をおこないます
 PROVIDING EHT AOS FOR THE FOLLOWING SET OF ATOMS :
     1 c            2 c
 for the   6 electrons of the actual atom you have
 to provide at least basis functions for the AO's :   2s  1p  0d  0f


 PROVIDING EHT AOS FOR THE FOLLOWING SET OF ATOMS :
     3 h            4 h            5 h            6 h
 for the   1 electrons of the actual atom you have
 to provide at least basis functions for the AO's :   1s  0p  0d  0f


 DO YOU WANT THE DEFAULT PARAMETERS FOR THE EXTENDED HUECKEL CALCULATION ?
 DEFAULT=y   HELP=?
  • INPUT: Enter or y
ENTER THE MOLECULAR CHARGE  (DEFAULT=0)
  • INPUT: Enter or 0
    • 電荷はゼロ(中性状態)
 NUMBER OF ELECTRONS IN YOUR MOLECULE IS   16


 AUTOMATIC OCCUPATION NUMBER ASSIGNMENT ESTABLISHED !
 FOUND CLOSED SHELL SYSTEM !
 HOMO/LUMO-SEPARATION :  0.232438
 ORBITAL  SYMMETRY      ENERGY     DEFAULT
 (SHELL)    TYPE                 OCCUPATION
     5     1b2u        -0.60494      2
     6     3ag         -0.51365      2
     7     1b1u        -0.50851      2
     8     1b1g        -0.49943      2
     9     1b2g        -0.26699      0
    10     2b2u         0.42819      0
    11     3b3u         0.62853      0

 DO YOU ACCEPT THIS OCCUPATION ?  DEFAULT=y
  • INPUT: Enter or y
 PROVIDING  'derivative'  DEFAULT PARAMETERS ...

 PROVIDING FORCE RELAXATION DEFAULT PARAMETERS ...

    mo occupation :
   irrep   mo's   occupied
    ag       9        3
    b1g      5        1
    b2g      3        0
    b3g      1        0
    au       1        0
    b1u      3        1
    b2u      5        1
    b3u      9        2

 number of basis functions   :    36
 number of occupied orbitals :     8

計算手法の選択

  • 次に、計算手法を設定します
 GENERAL MENU : SELECT YOUR TOPIC
 scf    : SELECT NON-DEFAULT SCF PARAMETER
 mp2    : OPTIONS AND DATA GROUPS FOR rimp2 and mpgrad
 cc     : OPTIONS AND DATA GROUPS FOR ricc2
 pnocc  : OPTIONS AND DATA GROUPS FOR pnoccsd
 ex     : EXCITED STATE AND RESPONSE OPTIONS
 prop   : SELECT TOOLS FOR SCF-ORBITAL ANALYSIS
 drv    : SELECT NON-DEFAULT INPUT PARAMETER FOR EVALUATION
          OF ANALYTICAL ENERGY DERIVATIVES
          (GRADIENTS, FORCE CONSTANTS)
 rex    : SELECT OPTIONS FOR GEOMETRY UPDATES USING RELAX
 stp    : SELECT NON-DEFAULT STRUCTURE OPTIMIZATION PARAMETER
 e      : DEFINE EXTERNAL ELECTROSTATIC FIELD
 dft    : DFT Parameters
 ri     : RI Parameters
 rijk   : RI-JK-HF Parameters
 rirpa  : RIRPA Parameters
 gw     : OPTIONS AND DATA GROUPS FOR GW (escf)
 senex  : seminumeric exchange parameters
 hybno  : hybrid Noga/Diag parameters
 dsp    : DFT dispersion correction
 nmr    : NMR shift parameters
 ncoup  : NMR coupling parameters
 epr    : EPR parameters
 trunc  : USE TRUNCATED AUXBASIS DURING ITERATIONS
 marij  : MULTIPOLE ACCELERATED RI-J

 fde    : Frozen Density Embedding
 dis    : DISPLAY MOLECULAR GEOMETRY
 list   : LIST OF CONTROL FILE
 &      : GO BACK TO OCCUPATION/ORBITAL ASSIGNMENT MENU
 * or q : END OF DEFINE SESSION
  • INPUT: dft
    • 密度汎関数法を使います
STATUS OF DFT_OPTIONS:
 DFT is NOT used
   functional b-p
     gridsize m3

 ENTER DFT-OPTION TO BE MODIFIED

 func    : TO CHANGE TYPE OF FUNCTIONAL
 grid    : TO CHANGE GRIDSIZE
  on:   TO SWITCH ON  DFT
 Just <ENTER>, q or '*' terminate this menu.
  • INPUT: func
    • 汎関数を設定します
  SURVEY OF AVAILABLE EXCHANGE-CORRELATION ENERGY FUNCTIONALS

 FUNCTIONAL      | TYPE | EXCHANGE       | CORRELATION    | REFERENCES
 ---------------------------------------------------------------------
 s-vwn           | LDA  | S              | VWN(V)         | 1-3
 s-vwn_Gaussian  | LDA  | S              | VWN(III)       | 1-3

(省略)

 hse06           | RSH  |short-range PBE |                |
 cam-b3lyp       | RSH  |b(B88)+aHF      |0.81LYP+0.19VWN5| 27
 wb97x           | RSH  | from LibXC     |                |
 wb97x-d         | RSH  | from LibXC     |                |
 wb97x-v         | RSH  | from LibXC     |                |
 wb97x-3c        | RSH  | from LibXC     |                |
 wb97m-v         | RSH  | from LibXC     |                |
 lc-wpbe         | RSH  | from LibXC     |                |
 m11             | RSH  | from LibXC     |                |

(省略)
  • INPUT: wb97x-d
    • ωB97X-D 汎関数を選択します
STATUS OF DFT_OPTIONS:
 DFT is NOT used
   functional wb97x-d
     gridsize m3
  • INPUT: *
    • 基底関数の設定を終わります

設定の保存と終了

  • INPUT: *
    • defineのセッションを終了し、設定をファイルに保存します
 ***********************************************************
 *                                                         *
 *                       e n d   o f                       *
 *                       D E F I N E                       *
 *                                                         *
 ***********************************************************
basis  control  coord  ethylene  ethylene.xyz  mos
basis
$basis
*
c 6-31G*
# c     (10s4p1d) / [3s2p1d]     {631/31/1}
*
   6  s
  3047.5249000      0.18347000000E-02
  457.36951000      0.14037300000E-01
  103.94869000      0.68842600000E-01
  29.210155000      0.23218440000
  9.2866630000      0.46794130000
  3.1639270000      0.36231200000
   3  s
  7.8682724000     -0.11933240000
  1.8812885000     -0.16085420000
 0.54424930000       1.1434564000
   1  s
 0.16871440000       1.0000000000
   3  p
  7.8682724000      0.68999100000E-01
  1.8812885000      0.31642400000
 0.54424930000      0.74430830000
   1  p
 0.16871440000       1.0000000000
   1  d
 0.80000000000       1.0000000000
*
h 6-31G*
# h     (4s) / [2s]     {31}
*
   3  s
  18.731137000      0.33494600000E-01
  2.8253937000      0.23472695000
 0.64012170000      0.81375733000
   1  s
 0.16127780000       1.0000000000
*
$end
control
$title
ethylene
$symmetry d2h
$redundant    file=coord
$user-defined bonds    file=coord
$coord    file=coord
$optimize
 internal   on
 redundant  on
 cartesian  off
 global     off
 basis      off
$atoms
c  1-2                                                                         \
   basis =c 6-31G*
h  3-6                                                                         \
   basis =h 6-31G*
$basis    file=basis
$scfmo   file=mos
$closed shells
 ag      1-3                                    ( 2 )
 b1g     1                                      ( 2 )
 b1u     1                                      ( 2 )
 b2u     1                                      ( 2 )
 b3u     1-2                                    ( 2 )
$scfiterlimit       30
$scfconv        7
$thize     0.10000000E-04
$thime        5
$scfdamp   start=0.300  step=0.050  min=0.100
$scfdump
$scfintunit
 unit=30       size=0        file=twoint
$scfdiis
$maxcor    500 MiB  per_core
$scforbitalshift  automatic=.1
$drvopt
   cartesian  on
   basis      off
   global     off
   hessian    on
   dipole     on
   nuclear polarizability
$interconversion  off
   qconv=1.d-7
   maxiter=25
$coordinateupdate
   dqmax=0.3
   interpolate  on
   statistics    5
$forceupdate
   ahlrichs numgeo=0  mingeo=3 maxgeo=4 modus=<g|dq> dynamic fail=0.3
   threig=0.005  reseig=0.005  thrbig=3.0  scale=1.00  damping=0.0
$forceinit on
   diag=default
$energy    file=energy
$grad    file=gradient
$forceapprox    file=forceapprox
$rundimensions
   natoms=6
   nbf(CAO)=38
   nbf(AO)=36
$last step     define
$end
coord
$coord  natoms=     6
    1.24468841888868      0.00000000000000      0.00000000000000      c
   -1.24468841888868      0.00000000000000      0.00000000000000      c
   -2.31603109935414     -1.72798218518704      0.00000000000000      h
   -2.31603109935414      1.72798218518704      0.00000000000000      h
    2.31603109935414      1.72798218518704      0.00000000000000      h
    2.31603109935414     -1.72798218518704      0.00000000000000      h
$user-defined bonds
$redundant
     number_of_atoms             6
     degrees_of_freedom          3
     internal_coordinates        3
     frozen_coordinates          0
# definitions of redundant internals
   1 k  1.0000000000000 stre    1    2           val=   2.48938
   2 k -0.8164965809277 bend    6    5    1      val=   2.69814
        0.4082482904639 bend    2    5    1
        0.4082482904639 bend    2    6    1
   3 k  1.0000000000000 stre    1    5           val=   2.03315
         3 non zero eigenvalues  of BmBt
           1           4.018807994    1    0
         1
           2           0.916751311    2    0
         2
           3           0.393970545    3    0
         3
$end
mos
$scfmo   expanded   format(4d20.14)
# molecular orbitals of project :
#  --->  ethylene  <---
     1  ag     eigenvalue=-.11331129956760D+02   nsaos=9
-.99547155775189D+00-.31012736005475D-01-.99119903000270D-02-.12297534249664D-01
-.10414474590208D-010.84976680810906D-04-.21945580448892D-030.11447629849686D-01
0.21676513838550D-01
     2  ag     eigenvalue=-.85737982670084D+00   nsaos=9
0.21163521349115D+00-.32572717358856D+00-.42468307399236D+00-.18042015327744D-01
-.71921833271127D-02-.12090612486699D-030.88386319815307D-03-.68524462552372D-01
-.12164506647763D+00
     3  ag     eigenvalue=-.51365079688816D+00   nsaos=9
0.65552781497607D-01-.73044929086838D-01-.14582474645070D+000.47901078613018D+00
0.34040045867238D+000.34562250547799D-03-.37160976879735D-020.17756795596056D+00
0.32139850371599D+00
     1  b1g    eigenvalue=-.49943058403148D+00   nsaos=5
0.42056355721658D+000.22857163258478D+000.10229844069096D-020.30437651055092D+00
0.50965883830392D+00
     1  b1u    eigenvalue=-.50850575435471D+00   nsaos=3
0.54519790029590D+000.42373241876959D+000.24117758841640D-02
     1  b2u    eigenvalue=-.60493754850913D+00   nsaos=5
0.35185047969971D+000.23593419373656D+000.45909390681048D-02-.20198499940200D+00
-.37259482480880D+00
     1  b3u    eigenvalue=-.11334517389930D+02   nsaos=9
0.99189143112463D+000.43175565559743D-010.34200003097057D-01-.19796018232524D-01
-.16165856786627D-010.52236243843878D-03-.64441039437352D-030.65729510179553D-02
0.15251512581716D-01
     2  b3u    eigenvalue=-.70399743338664D+00   nsaos=9
-.15943982078143D+000.26462979445791D+000.28808943158560D+000.15407788265258D+00
0.12366023098259D+00-.20177475908427D-02-.97846891429849D-03-.18752997497078D+00
-.32281838229220D+00
$end

計算の実行

  • defineでの設定後、jobexコマンドで構造最適化を実行します
jobex | tee jobex.log
                               JOBEX

           GENERAL SHELL-SCRIPT FOR GEOMETRY OPTIMIZATION IN
                          T U R B O M O L E

Usage: jobex <ARGUMENTS>
where the most frequently used arguments are:
  ----------------------------------------------------------------------
     PARAMETER              |     ARGUMENT          |   DEFAULT
  ----------------------------------------------------------------------
   view this help           | -h                    |
                            |                       |
   switch to RI versions    | -ri                   |
   (RIDFT, RDGRAD)          |                       |
                            |                       !
   switch to RIPER          | -riper                |
   (includes periodic DFT)  |                       |
                            |                       |
   load directory           | -l <directory path>   |
   containing executables   |                       | $TURBODIR/bin/`sysname`
                            |                       |
   select comp level        | -level <arg>          | -level scf
                            | <arg> = scf           |
                            |         -or- mp2      |
                            |         -or- cc2      |
                            |         -or- NumGrad  |
                            |         -or- rirpa    |
                            |         -or- uff      |
                            |                       |
   switch to RI-JK versions |  -rijk                |
   of HF and CPHF           |  (works only with     |
   (RIDFT, RICC2)           |   '-level cc2')       |
                            |                       |
   select number of CPU's   | -np <number>          | depends on the
   you'd like to use for    |                       | machine, usually
   parallel calculation     |                       | -np 2
  ----------------------------------------------------------------------

and the more specialised functions are:
  ----------------------------------------------------------------------
     PARAMETER              |     ARGUMENT             |   DEFAULT
  ----------------------------------------------------------------------
   max. number of cycles    | -c <integer>             |   -c 100
                            |                          |
   cycle to start with      | -start <integer>         |      0
                            |                          |
   convergency criteria (1) |                          |
     total energy           | -energy <integer>        |   -energy 6
     cart. gradient norm    | -gcart <integer>         |   -gcart 3
     expnt. gradient norm   | -gexp <integer>          |   -gexp 3
                            |                          |
   select first step        | -dscf      dscf step     |   -dscf
                            | -grad      gradient step |     (2)
                            |                          |
   program version          |                          |
     special versions       | ecp -or- ncs -or- para   |     ' '
     non-standard extension | -modus <extension> (3)   |
                            |                          |
   molecular dynamics       | -md                      |     (4)
                            |                          |
   MD master file           | -mdfile <filename>       | -mdfile mdmaster
                            |                          |
   MD shell script          | -mdscript <filename>     |
                            |                          |
   excited state geometry   | -ex                      |
   optimization             |                          |
                            |                          |
   transition state         | -trans                   |     (5)
   geometry optimization    |                          |
                            |                          |
   structure optimization   | -relax                   |     (6)
   with the program relax   |                          |
                            |                          |
   All output directly      | -v                       |
   to terminal              |                          |
                            |                          |
   All output directed      | -outfile <filename>      |
   to specified file        |                          |
                            |                          |
   All output files are     | -keep                    |
   preserved                |                          |
                            |                          |
   Avoid search for new     | -noired                  |
   internal redundant       |                          |
   coords if the old ones   |                          |
   fail                     |                          |
                            |                          |
   Write xyz format movie   | -movie                   |
   file as the standard     | jobex -movie > movie.xyz |
   output                   |                          |
  ----------------------------------------------------------------------

  (1) <integer> corresponds to a final threshold of 10**(-<integer>).
  (2) If 'nextstep' file exists, the contents of this file are the first step.
  (3) Non-standard filenames for DSCF and GRAD may be specified
  by argument -modus <extension>, where the programs are named
  'dscf_<extension>' and 'grad_<extension>': e.g to run files 'dscf_oh'
  and 'grad_oh', use "-modus oh".  It is assumed that there is only one
  version of the relaxation programs STATPT or RELAX.
  (4) Option -md uses the MD program FROG instead of STATPT to update
  coordinates with gradients from 'gradient' file.
  Option -mdfile looks for MD commands in <filename> instead of in mdmaster.
  Option -mdscript calls a shell script <filename> before the FROG step.
  (5) Transition state geometry optimization. An initial Hessian matrix must
  be provided (or results of the lowest eigenvalue search). As default, the
  aoforce program is run in the first cycle.
  (6) Structure optimization using the relax program.
  ----------------------------------------------------------------------

     THIS SHELL SCRIPT CAN BE CHECKED BY RUNNING     jobex -check
  ----------------------------------------------------------------------

分子研スパコンの場合

  • ジョブファイル(jobex.job)を準備して、jsubでキューイングシステムに投入します
jobex.job
#!/bin/bash

#PBS -l select=1:ncpus=8:mpiprocs=1:ompthreads=8:jobtype=core
#PBS -l walltime=24:00:00

module load turbomole

cd ${PBS_O_WORKDIR}

jobex | tee jobex.log
jsub jobex.job

結果の確認

  • 計算の詳細はjob.lastに出力されます
job.last
OPTIMIZATION CYCLE 2
Sat May  4 20:01:54 JST 2024
STARTING grad VIA YOUR QUEUING SYSTEM!

(省略)

next step = grad
 energy change  : actual value =  -0.4000E-09 threshold =   0.1000E-05
 geom. gradient : actual value =   0.1242E-05 threshold =   0.1000E-02

CONVERGENCY CRITERIA FULFILLED IN CYCLE 2
  • エネルギーの変化はenergy、最適化された構造はcoordで確認できます
energy
$energy      SCF               SCFKIN            SCFPOT
     1   -78.03136095675    78.09016578910  -156.12152674585
     2   -78.03136095717    78.09016339148  -156.12152434865
     3   -78.03136095985    78.09016467965  -156.12152563950
$end
coord
$coord
    1.24468674539171      0.00000000000000      0.00000000000000  c
   -1.24468674539171      0.00000000000000      0.00000000000000  c
   -2.31603595919819     -1.72798164334127      0.00000000000000  h
   -2.31603595919819      1.72798164334127      0.00000000000000  h
    2.31603595919819      1.72798164334127      0.00000000000000  h
    2.31603595919819     -1.72798164334127      0.00000000000000  h
$user-defined bonds
$redundant
     number_of_atoms             6
     degrees_of_freedom          3
     internal_coordinates        3
     frozen_coordinates          0
# definitions of redundant internals
   1 k  1.0000000000000 stre   1    2           val=   2.48937
   2 k -1.1547005383792 bend   6    5    1      val=   2.69839
        0.5773502691897 bend   2    5    1
        0.5773502691897 bend   2    6    1
   3 k  2.0000000000000 stre   1    5           val=   2.03315
         3 non zero eigenvalues  of BmBt
           1           4.018807994    1    0
         1
           2           0.916751311    2    0
         2
           3           0.393970545    3    0
         3
$end
  • coord形式の座標データは、t2xコマンドで、通常のxyz形式に変換できます
t2x coord | tee ethylene_opt.xyz
ethylene_opt.xyz
6
Energy =
C     0.6586599    0.0000000    0.0000000
C    -0.6586599    0.0000000    0.0000000
H    -1.2255934   -0.9144085    0.0000000
H    -1.2255934    0.9144085    0.0000000
H     1.2255934    0.9144085    0.0000000
H     1.2255934   -0.9144085    0.0000000
ethylene_opt.xyz

振動数解析

  • 最適化された立体構造を用いて、分子の振動状態を解析します
  • 振動数解析をおこなうことで、赤外 or ラマンスペクトルを予測することができます

計算の実行

  • 構造最適化を実行したときと同じディレクトリでaoforceコマンドを使用して振動数解析を実行します
aoforce | tee force.out

分子研スパコンの場合

  • ジョブファイル(aoforce.job)を準備して、jsubでキューイングシステムに投入します
jobex.job
#!/bin/bash

#PBS -l select=1:ncpus=8:mpiprocs=1:ompthreads=8:jobtype=core
#PBS -l walltime=24:00:00

module load turbomole

cd ${PBS_O_WORKDIR}

aoforce | tee force.out
jsub aoforce.job

結果の確認

  • 計算の詳細はforce.outに出力されます
force.out
(省略)

       mode               7        8        9       10       11       12

     frequency         897.15  1094.43  1098.32  1154.55  1352.75  1496.52

     symmetry            b2u      b1u      b2g      au       b1g      ag

        IR               YES      YES      NO       NO       NO       NO
|dDIP/dQ|   (a.u.)     0.0003   0.0075   0.0000   0.0000   0.0000   0.0000
intensity (km/mol)       0.22   100.73     0.00     0.00     0.00     0.00
intensity (  %   )       0.21   100.00     0.00     0.00     0.00     0.00

(省略)
  • 振動スペクトルはvibspectrumファイルで確認できます
vibspectrum
$vibrational spectrum
#  mode     symmetry     wave number   IR intensity    selection rules
#                         cm**(-1)        km/mol         IR     RAMAN
     1                       -0.00         0.00000        -       -
     2                       -0.00         0.00000        -       -
     3                        0.00         0.00000        -       -
     4                        0.00         0.00000        -       -
     5                        0.00         0.00000        -       -
     6                        0.00         0.00000        -       -
     7        b2u           897.15         0.21646       YES     NO
     8        b1u          1094.43       100.72648       YES     NO
     9        b2g          1098.32         0.00000       NO      YES
    10        au           1154.55         0.00000       NO      NO
    11        b1g          1352.75         0.00000       NO      YES
    12        ag           1496.52         0.00000       NO      YES
    13        b3u          1611.16         5.94160       YES     NO
    14        ag           1856.79         0.00000       NO      YES
    15        b3u          3318.48        25.16488       YES     NO
    16        ag           3342.06         0.00000       NO      YES
    17        b1g          3392.88         0.00000       NO      YES
    18        b2u          3419.06        40.17169       YES     NO
$end

励起状態計算

  • 励起状態計算では、電子励起状態とそれに関連する特性を調べることができます

define セッションの開始

  • defineを実行して設定セッションを開始します
define
***********************************************************
 *                                                         *
 *                       D E F I N E                       *
 *                                                         *
 *         TURBOMOLE'S  INTERACTIVE  INPUT  PROGRAM        *
 *                                                         *
 *  Quantum Chemistry Group       University of Karlsruhe  *
 *                                                         *
 ***********************************************************


 FILE control ALREADY EXISTS
 I WILL PLUG IN THE NEW DATA.

 DATA WILL BE TAKEN FROM control BY DEFAULT

 DEFAULT TITLE OF THIS PROJECT IS :
ethylene
 HIT >return< TO ACCEPT DEFAULT TITLE OR
 INPUT TITLE
  • INPUT: Enter
 SYMMETRY d2h  AND CARTESIAN COORDINATES FOR   6 ATOMS
 HAVE BEEN READ FROM THE DEFAULT INPUT FILE control .
 DEFINITIONS OF INTERNAL COORDINATES HAVE  N O T  BEEN READ.
 SPECIFICATION OF BOND TOPOLOGY HAS BEEN READ.
 DO YOU WANT TO CHANGE THE GEOMETRY DATA ?  DEFAULT=n  GOBACK=&
  • INPUT: Enter
 ATOMIC ATTRIBUTE DATA (BASES,CHARGES,MASSES,ECPS) HAVE BEEN
 TAKEN FROM THE DEFAULT INPUT FILE control.
 DO YOU WANT TO CHANGE THESE DATA ? DEFAULT=n  GOBACK=&
  • INPUT: Enter
              +--------------------------------------------------+
              |               basis set information              |
              +--------------------------------------------------+

              we will work with the 1s 3p 5d 7f 9g ... basis set
              ...i.e. with spherical basis functions...

   type   atoms  prim   cont   basis
   ---------------------------------------------------------------------------
    c        2     27     14   6-31G*   [3s2p1d|10s4p1d]
    h        4      4      2   6-31G*   [2s|4s]
   ---------------------------------------------------------------------------
   total:    6     70     36
   ---------------------------------------------------------------------------

   total number of primitive shells          :   19
   total number of contracted shells         :   20
   total number of cartesian basis functions :   38
   total number of SCF-basis functions       :   36


              ATOMIC COORDINATES              ATOM SHELLS CHARGE PSEUDO MASS
     1.24468675    0.00000000    0.00000000    c      6      6.     0 12.011
    -1.24468675    0.00000000    0.00000000    c      6      6.     0 12.011
    -2.31603596   -1.72798164    0.00000000    h      2      1.     0  1.008
    -2.31603596    1.72798164    0.00000000    h      2      1.     0  1.008
     2.31603596    1.72798164    0.00000000    h      2      1.     0  1.008
     2.31603596   -1.72798164    0.00000000    h      2      1.     0  1.008


 we will work with the  1s 3p 5d

 there are 8 real representations :   ag   b1g  b2g  b3g  au   b1u  b2u  b3u

    mo occupation :
   irrep   mo's   occupied
    ag       9        3
    b1g      5        1
    b2g      3        0
    b3g      1        0
    au       1        0
    b1u      3        1
    b2u      5        1
    b3u      9        2

 number of basis functions   :    36
 number of occupied orbitals :     8


 reading orbital data $scfmo  from file mos
 orbital characterization : scfconv=7

 MOLECULAR ORBITAL DATA (OCCUPATION NUMBERS,MOS) HAVE BEEN
 TAKEN FROM THE DEFAULT INPUT FILE control .
 DO YOU WANT TO CHANGE THESE DATA ?  DEFAULT=n  GOBACK=&
  • INPUT: Enter
 orbitals $scfmo will be written to file mos

 ADJUSTING DATA GROUP  $drvopt  FOR CURRENT REQUIREMENTS

 FORCE CONSTANT INITIALIZATION $forceinit WILL BE ENABLED

 DO YOU WANT TO DELETE DATA GROUPS LIKE
     $energy
     $grad
     $hessian
     $hessian (projected)
     $dipole
     $dipgrad
     $vibrational normal modes
     $vibrational spectrum
 LEFT OVER FROM PREVIOUS CALCULATIONS ? DEFAULT(n)
  • INPUT: Enter
    mo occupation :
   irrep   mo's   occupied
    ag       9        3
    b1g      5        1
    b2g      3        0
    b3g      1        0
    au       1        0
    b1u      3        1
    b2u      5        1
    b3u      9        2

 number of basis functions   :    36
 number of occupied orbitals :     8

励起状態計算の設定

  • 次に、励起状態の計算条件を設定します
 GENERAL MENU : SELECT YOUR TOPIC
 scf    : SELECT NON-DEFAULT SCF PARAMETER
 mp2    : OPTIONS AND DATA GROUPS FOR rimp2 and mpgrad
 cc     : OPTIONS AND DATA GROUPS FOR ricc2
 pnocc  : OPTIONS AND DATA GROUPS FOR pnoccsd
 ex     : EXCITED STATE AND RESPONSE OPTIONS
 prop   : SELECT TOOLS FOR SCF-ORBITAL ANALYSIS
 drv    : SELECT NON-DEFAULT INPUT PARAMETER FOR EVALUATION
          OF ANALYTICAL ENERGY DERIVATIVES
          (GRADIENTS, FORCE CONSTANTS)
 rex    : SELECT OPTIONS FOR GEOMETRY UPDATES USING RELAX
 stp    : SELECT NON-DEFAULT STRUCTURE OPTIMIZATION PARAMETER
 e      : DEFINE EXTERNAL ELECTROSTATIC FIELD
 dft    : DFT Parameters
 ri     : RI Parameters
 rijk   : RI-JK-HF Parameters
 rirpa  : RIRPA Parameters
 gw     : OPTIONS AND DATA GROUPS FOR GW (escf)
 senex  : seminumeric exchange parameters
 hybno  : hybrid Noga/Diag parameters
 dsp    : DFT dispersion correction
 nmr    : NMR shift parameters
 ncoup  : NMR coupling parameters
 epr    : EPR parameters
 trunc  : USE TRUNCATED AUXBASIS DURING ITERATIONS
 marij  : MULTIPOLE ACCELERATED RI-J

 fde    : Frozen Density Embedding
 dis    : DISPLAY MOLECULAR GEOMETRY
 list   : LIST OF CONTROL FILE
 &      : GO BACK TO OCCUPATION/ORBITAL ASSIGNMENT MENU
 * or q : END OF DEFINE SESSION
  • INPUT: ex
 MAIN MENU FOR RESPONSE CALCULATIONS

 OPTION | STATUS | DESCRIPTION
 -------------------------------------------------------------------
 rpas   | off    | RPA SINGLET EXCITATIONS (TDHF OR TDDFT)
 ciss   | off    | TDA SINGLET EXCITATIONS (CI SINGLES)
 rpat   | off    | RPA TRIPLET EXCITATIONS (TDHF OR TDDFT)
 cist   | off    | TDA TRIPLET EXCITATIONS (CI SINGLES)
 polly  | off    | STATIC POLARIZABILITY
 dynpol | off    | DYNAMIC POLARIZABILITY
 single | off    | SINGLET STABILITY ANALYSIS
 triple | off    | TRIPLET STABILITY ANALYSIS
 nonrel | off    | NON-REAL STABILITY ANALYSIS
 bse    | off    | BETHE-SALPETER EX.
 cbse   | off    | corr-aug. BETHE-SALPETER EX.

 ENTER <OPTION> TO SWITCH ON/OFF OPTION, * OR q TO QUIT
  • INPUT: rpas
    • TD-DFT を選択します
 MAIN MENU FOR RESPONSE CALCULATIONS

 OPTION | STATUS | DESCRIPTION
 -------------------------------------------------------------------
 rpas   | on     | RPA SINGLET EXCITATIONS (TDHF OR TDDFT)
 ciss   | off    | TDA SINGLET EXCITATIONS (CI SINGLES)
 rpat   | off    | RPA TRIPLET EXCITATIONS (TDHF OR TDDFT)
 cist   | off    | TDA TRIPLET EXCITATIONS (CI SINGLES)
 polly  | off    | STATIC POLARIZABILITY
 dynpol | off    | DYNAMIC POLARIZABILITY
 single | off    | SINGLET STABILITY ANALYSIS
 triple | off    | TRIPLET STABILITY ANALYSIS
 nonrel | off    | NON-REAL STABILITY ANALYSIS
 bse    | off    | BETHE-SALPETER EX.
 cbse   | off    | corr-aug. BETHE-SALPETER EX.

 ENTER <OPTION> TO SWITCH ON/OFF OPTION, * OR q TO QUIT
  • INPUT: *
    • 次の設定に進みます
 STATE SELECTION MENU

 IRREP |  #STATES  | #SELECTED |
 ----------------------------------------------------------------
  ag   |       42  |        0  |
  b1g  |       34  |        0  | Lz
  b2g  |       22  |        0  | Ly
  b3g  |       14  |        0  | Lx
  au   |       14  |        0  |
  b1u  |       20  |        0  | z
  b2u  |       34  |        0  | y
  b3u  |       44  |        0  | x

 SELECT IRREP AND NUMBER OF STATES
 ENTER ? FOR HELP, * OR Q TO QUIT, & TO GO BACK
  • INPUT: all 3
    • 各対称性について最初の3つの励起状態を計算してみます
 STATE SELECTION MENU

 IRREP |  #STATES  | #SELECTED |
 ----------------------------------------------------------------
  ag   |       42  |        3  |
  b1g  |       34  |        3  | Lz
  b2g  |       22  |        3  | Ly
  b3g  |       14  |        3  | Lx
  au   |       14  |        3  |
  b1u  |       20  |        3  | z
  b2u  |       34  |        3  | y
  b3u  |       44  |        3  | x

 SELECT IRREP AND NUMBER OF STATES
 ENTER ? FOR HELP, * OR Q TO QUIT, & TO GO BACK
  • INPUT: *
    • 次の設定に進みます
 GENERAL OPTIONS FOR RESPONSE CALCULATIONS

 OPTION  | VALUE    | DESCRIPTION
 -------------------------------------------------------
 rpacor  |      200 | MEMORY (MB) (RECOMMENDED:     200)
 rpaconv |        5 | CONVERGENCE THRESHOLD (DEFAULT: 5)
 -------------------------------------------------------
 RECOMMENDED MEMORY CAN BE DIVIDED BY 2 FOR non-hybrid DFT!

 ENTER <OPTION> <VALUE> TO CHANGE OPTION, * OR q TO QUIT
  • INPUT: *
    • 次の設定に進みます
 SET SCF DENSITY CONVERGENCE THRESHOLD $denconv TO 1d-7
 (RECOMMENDED FOR RESPONSE CALCULATIONS) (y/n, DEFAULT:y)?
  • INPUT: Enter
    • デフォルトの設定のままにします

ジョブの保存と終了

  • INPUT: *
    • 設定を終了します
 ***********************************************************
 *                                                         *
 *                       e n d   o f                       *
 *                       D E F I N E                       *
 *                                                         *
 ***********************************************************
control
$title
ethylene
$symmetry d2h
$redundant    file=coord
$user-defined bonds    file=coord
$coord    file=coord
$optimize
 internal   on
 redundant  on
 cartesian  off
 global     off
 basis      off
$atoms
c  1-2                                                                         \
   basis =c 6-31G*
h  3-6                                                                         \
   basis =h 6-31G*
$basis    file=basis
$scfmo   file=mos
$scfiterlimit       30
$scfconv        7
$thize     0.10000000E-04
$thime        5
$scfdamp   start=0.300  step=0.050  min=0.100
$scfdump
$scfintunit
 unit=30       size=0        file=twoint
$scfdiis
$scforbitalshift  automatic=.1
$drvopt
   cartesian  on
   basis      off
   global     off
   hessian    on
   dipole     on
   nuclear polarizability
$interconversion  off
   qconv=1.d-7
   maxiter=25
$coordinateupdate
   dqmax=0.3
   interpolate  on
   statistics    5
$forceupdate
   ahlrichs numgeo=0  mingeo=3 maxgeo=4 modus=<g|dq> dynamic fail=0.3
   threig=0.005  reseig=0.005  thrbig=3.0  scale=1.00  damping=0.0
$forceinit on
   diag=default
$energy    file=energy
$grad    file=gradient
$forceapprox    file=forceapprox
$rundimensions
   natoms=6
   nbf(CAO)=38
   nbf(AO)=36
$last SCF energy change = -.26793003E-08
$charge from dscf
         -0.000 (not to be modified here)
$dipole from force
  x    -0.00000000000000    y     0.00000000000000    z     0.00000000000000    a.u.
   | dipole | =    0.0000000000  debye
$optinfo       file=optinfo
$hessapprox   file=hessapprox
$orbital_max_rnorm 0.10769779602030E-06
$dipgrad    file=dipgrad
$hessian (projected)    file=hessian
$vibrational normal modes    file=vib_normal_modes
$vibrational reduced masses
   1.3258967772   1.8945238567   3.6287625946   2.0471565005   4.2506770105
   3.5143354754   1.0426731556   1.1607969330   1.5196113978   1.0079700000
   1.5224873469   1.2529577899   1.1117148104   2.9267262232   1.0481533486
   1.0779906478   1.1164337846   1.1179469536
$nvibro       18
$vibrational spectrum    file=vibspectrum
$closed shells
 ag      1-3                                    ( 2 )
 b1g     1                                      ( 2 )
 b1u     1                                      ( 2 )
 b2u     1                                      ( 2 )
 b3u     1-2                                    ( 2 )
$scfinstab rpas
$soes all         3
#$maxcor    500 MiB  per_core
$denconv 1d-7
$last step     define
$end

計算の実行

  • dscfコマンドで一点計算をおこなったあと、escfコマンドで励起状態を計算します
dscf | tee dscf.log
escf | tee escf.log

分子研スパコンの場合

  • ジョブファイル(escf.job)を準備して、jsubでキューイングシステムに投入します
jobex.job
#!/bin/bash

#PBS -l select=1:ncpus=8:mpiprocs=1:ompthreads=8:jobtype=core
#PBS -l walltime=24:00:00

module load turbomole

cd ${PBS_O_WORKDIR}

dscf | tee dscf.log
escf | tee escf.log
jsub escf.job

計算の確認

  • 計算の詳細はescf.logに出力されます
  • 励起スペクトルはexspectrumで確認することができます
exspectrum
# Excitation spectrum ethylene; written at 2024-05-04 21:13:05
#       Exc.       energy (Eh)   energy (eV)   energy (cm-1)   energy (nm)     Osc.(vel)      Osc.(len)
         1 ag        0.589441      16.03950   0.12936731D+06        77.299     0.00000000     0.00000000
         2 ag        0.643592      17.51302   0.14125205D+06        70.795     0.00000000     0.00000000
         3 ag        0.706412      19.22245   0.15503951D+06        64.500     0.00000000     0.00000000
         1 b1g       0.494028      13.44318   0.10842659D+06        92.228     0.00000000     0.00000000
         2 b1g       0.681824      18.55339   0.14964315D+06        66.826     0.00000000     0.00000000
         3 b1g       0.708695      19.28457   0.15554056D+06        64.292     0.00000000     0.00000000
         1 b2g       0.388259      10.56506   0.85212985D+05       117.353     0.00000000     0.00000000
         2 b2g       0.433395      11.79328   0.95119227D+05       105.131     0.00000000     0.00000000
         3 b2g       0.570503      15.52418   0.12521096D+06        79.865     0.00000000     0.00000000
         1 b3g       0.356027       9.68798   0.78138813D+05       127.977     0.00000000     0.00000000
         2 b3g       0.378958      10.31198   0.83171732D+05       120.233     0.00000000     0.00000000
         3 b3g       0.809799      22.03577   0.17773044D+06        56.265     0.00000000     0.00000000
         1 au        0.479360      13.04405   0.10520737D+06        95.050     0.00000000     0.00000000
         2 au        0.507747      13.81651   0.11143768D+06        89.736     0.00000000     0.00000000
         3 au        0.929827      25.30187   0.20407338D+06        49.002     0.00000000     0.00000000
         1 b1u       0.377417      10.27005   0.82833559D+05       120.724     0.00326119     0.00074012
         2 b1u       0.664826      18.09085   0.14591251D+06        68.534     0.13719402     0.13363109
         3 b1u       0.712697      19.39348   0.15641898D+06        63.931     0.16650119     0.19466603
         1 b2u       0.544350      14.81251   0.11947098D+06        83.702     1.09170693     1.06128111
         2 b2u       0.584721      15.91108   0.12833151D+06        77.923     0.11403575     0.10592582
         3 b2u       0.671742      18.27903   0.14743033D+06        67.829     0.43679806     0.47637986
         1 b3u       0.304073       8.27424   0.66736232D+05       149.844     0.44155754     0.45235991
         2 b3u       0.534956      14.55690   0.11740934D+06        85.172     0.73906903     0.73111966
         3 b3u       0.622605      16.94194   0.13664596D+06        73.182     0.34006115     0.32566921

さいごに

  • defineで対話的にインプットファイルを準備しながら計算に取り組んでいくという、他の量子化学計算パッケージとは異なるスタイルには慣れが必要かも知れません
turbomole量子化学計算化学
Posted :